Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagn Interv Imaging ; 101(12): 789-794, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32451309

RESUMO

PURPOSE: The purpose of this study was to build and train a deep convolutional neural networks (CNN) algorithm to segment muscular body mass (MBM) to predict muscular surface from a two-dimensional axial computed tomography (CT) slice through L3 vertebra. MATERIALS AND METHODS: An ensemble of 15 deep learning models with a two-dimensional U-net architecture with a 4-level depth and 18 initial filters were trained to segment MBM. The muscular surface values were computed from the predicted masks and corrected with the algorithm's estimated bias. Resulting mask prediction and surface prediction were assessed using Dice similarity coefficient (DSC) and root mean squared error (RMSE) scores respectively using ground truth masks as standards of reference. RESULTS: A total of 1025 individual CT slices were used for training and validation and 500 additional axial CT slices were used for testing. The obtained mean DSC and RMSE on the test set were 0.97 and 3.7 cm2 respectively. CONCLUSION: Deep learning methods using convolutional neural networks algorithm enable a robust and automated extraction of CT derived MBM for sarcopenia assessment, which could be implemented in a clinical workflow.


Assuntos
Músculos Abdominais , Aprendizado Profundo , Sarcopenia , Tomografia Computadorizada por Raios X , Músculos Abdominais/diagnóstico por imagem , Algoritmos , Humanos , Redes Neurais de Computação , Sarcopenia/diagnóstico por imagem
2.
Diagn Interv Imaging ; 101(12): 783-788, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32245723

RESUMO

PURPOSE: The second edition of the artificial intelligence (AI) data challenge was organized by the French Society of Radiology with the aim to: (i), work on relevant public health issues; (ii), build large, multicentre, high quality databases; and (iii), include three-dimensional (3D) information and prognostic questions. MATERIALS AND METHODS: Relevant clinical questions were proposed by French subspecialty colleges of radiology. Their feasibility was assessed by experts in the field of AI. A dedicated platform was set up for inclusion centers to safely upload their anonymized examinations in compliance with general data protection regulation. The quality of the database was checked by experts weekly with annotations performed by radiologists. Multidisciplinary teams competed between September 11th and October 13th 2019. RESULTS: Three questions were selected using different imaging and evaluation modalities, including: pulmonary nodule detection and classification from 3D computed tomography (CT), prediction of expanded disability status scale in multiple sclerosis using 3D magnetic resonance imaging (MRI) and segmentation of muscular surface for sarcopenia estimation from two-dimensional CT. A total of 4347 examinations were gathered of which only 6% were excluded. Three independent databases from 24 individual centers were created. A total of 143 participants were split into 20 multidisciplinary teams. CONCLUSION: Three data challenges with over 1200 general data protection regulation compliant CT or MRI examinations each were organized. Future challenges should be made with more complex situations combining histopathological or genetic information to resemble real life situations faced by radiologists in routine practice.


Assuntos
Inteligência Artificial , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Humanos , Radiologistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...